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Abstract. We investigate the properties of the one-step replica-symmetry-breakisg) (
solution for a perceptron learning from examples with weight mismatch where the entropy zero
line crosses the Almeida—Thoulegs)(line of thers solution. For a small number of examples

we find the optimakRrss solution which has the maximum free energy, non-negative entropy
and satisfies the stability condition, tie criterion for theirss solution. The transition froms

to 1rRsBis continuous or discontinuous depending on whetherther line is above or below

the zero entropy line. However, for a relatively large number of examplesirRéesolution
which maximizes the free energy becomes unstable, and should be replaced by higheestep
solutions. We also obtain the line for the 1rsB solution.

1. Introduction

Feedforward layered networks, so-called perceptrons, are considered as having an
appropriate neural architecture where various learning mechanisms can be studied [1-4].
Gardner [5] showed that a statistical-mechanical approach can be useful for studying the
properties of feedforward networks, whence there have been many valuable results in studies
of storage capacity [5-7] and learning [8-10]. Most of the studies have been done for a
single-layer perceptron, the simplest feedforward network. Recently, some progress in
studies on a double-layer perceptron, the committee machine, has been reported [11-14].
Further studies on a more realistic network, with more than two layers or multiple outputs,
are in progress [15].

In this paper, we revisit the problem of learning in a single-layer perceptron, where there
was an unresolved question about the nature of the low-temperature solution. The network
is composed ofV input nodes N synapses with weight®; (i = 1,..., N), and a single
output node. A teacher network provid@ssets of examples in the form of input—output
pairs,(S’, o0(S")), with/ = 1, ..., P. Input variabless!, interpreted as a problem (pattern),
areith components of vectorS'. The resultant output!, as the answer (pattern code), is
generated via synaptic weights and the transfer funggipas o) = go(N"Y28" - W9). A
student network with a given transfer functignis trained by tuning the synaptic weights
to minimize the error of the trial answer = g(N~28’ . W) from the correct one given
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by the teacher network. The error functi&nis defined as
P

E(W;{S')) = ) eW: 8"

=1

P

=Y 1[e (NS W) —go (NTV2S - WO (1.1)
=1

The numberP of examples is known to scale asV so as to reach a learning stage.
Regarding the error function in equation (1.1) as the Hamiltonian of a thermodynamic
system, this learning problem becomes a statistical mechanics problem of a disordered
system.

When the architectures of the teacher and the student network are different from each
other, the student network might not reproduce the target output of the teacher network
exactly. Among these unrealizable cases, the case of weight mismatch is interesting, where
the student network has discrete weighis,= 41, while the teacher has continuous ones.
Output made by the student cannot be correct, instead there are many optimal answers
with the same level of error, which correspond to many degenerate ground states in the
sense of statistical mechanics. In fact, Seatal found that a spin-glass phase exists
in a low-temperature region. As an approximate estimate for the phase boundary of the
spin-glass phase, they suggested the line of zero entropy below which the replica-symmetric
(R9) solution has a negative entropy [9]. Particularly when the transfer function is Boolean,
they found that the one-step replica-symmetry-breakim$#) solution can be found very
easily and proposed it as an exact solution below the zero entropy line as in the study
of storage capacity [7]. Later, Kwoat al obtained an instability line corresponding to
the Almeida—Thoulessaf) line of the RS solution and proposed it as the exact phase
boundary of the spin-glass phase. They found Ahdine when the transfer function is
linear in figure 1 of [10], showing that there is a crossing betweenathéne and the
zero entropy line. We reproduce this in figure 1. We also find Ahdine when the
transfer function is Boolean in figure 2, which shows thie line lies below the zero

0.30 T T T T T
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Figure 1. Zero entropy line and ther line of thers and 1rsB solution for the linear transfer
function.
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entropy line for all regions. It means that a discontinuous transition should occur from
the Rs solution across the zero entropy line, confirming the earlier proposition by Sgung
al.

AT line —
Zero entropy line -

04 -

oz / i

Figure 2. Zero entropy line and thar line of theRrs solution for the Boolean transfer function.
The AT line drops to thel' = 0 axis ata = 2.47.

The case of the linear transfer function, however, left a problem unresolved. As seen in
figure 1, theaT line is below the zero entropy line for small numbers of examples, so should
not be regarded as the phase boundary. Note that one of the eigenvalues, determining the
curvature of the free energy, vanishes atAhdine, signalling a continuous phase transition.

In the region where theT line is below the zero entropy line, there might be a first-
order phase transition above the line. The first-order phase transition is determined by
comparing thers solution, correct at high temperatures, with the low-temperature solution
having a certain broken replica symmetry. We considerith&s solution as a candidate,

at least as a more physical one than ®#sone. In section 2, we derive the self-consistent
equations for thetRsB solution which by no means show a simple form in contrast to
the case of the Boolean transfer function. In section 3, we derive the stability condition
for the 1RSB solution in order to check whether it may be stable at low temperature. In
section 4, we present our results which show quite complicated behaviour, not observed
in the case of the Boolean transfer function. We find that there exiss solutions at a

low temperature with non-negative entropy. Via the stability analysis ofifss solution

we find, however, therss solution which satisfies the stationarity with respect torise
parametenn in the Parisi replica-symmetry-breaking scheme [16] becomes unstable for a
relatively large number of examples. We obtain the stability line for 1kes solution

and show how transitions from thrs to the 1RSB solution occur either discontinuously or
continuously ing; — g, according to the number of examples. We summarize our study in
section 5.
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2. One-stepRsB solution

The free-energy functionat per neuron was found using the replica trick and the saddle-
point method in the limit of large numbe¥ of input nodes, expressed as

nBfIRs, Iém Oops Qap]

= ZR Ro+Y " QopQop—INTrye) exp|:ZR Wowo+y " QapW“WO:|

o<p o<p

dx" dx’ [ dyd
—aln / I ”exp[ 1Y (806" — go(»)?

+Y IR =iy + Y Qo8 = 1Y £2 -5 ReE7 — 35 ] (2.1)

a<p

Here,o and p are replica indices and is the number of replicas. The — 0 limit is
taken afterwards. The weight? of the teacher network is quenched, having a Gaussian
distribution with a variance of unity. The weight&° of the replicated student networks
are either+1 or —1. We restrict ourselves to the case of unrealizable learning solely due to
weight mismatch. Sog(x) = go(x) = x. The free-energy functional is made stationary by
the saddle-point solution given by the order paramet@gs, and R,, and their conjugate
parametersQap andR

Now we assume the saddle-point solution has one-step replica-symmetry breaking.
Following the Parisi replica-symmetry-breaking scheme [16], we divide n) matrices,
0., and QU,), into (n/m)? blocks of sizen. Then, the order parameté,, can be written
as

Qop = (1 - Ql)aop + (q1 - CIO)EJ,O + qo (22)
wheres,,, is the Kronecker delta function and the matejy, is defined as

1 if o andp are in a diagonal block

op — . 2.3
Cor 0 otherwise . (3)

Qg,, can be written in a similar way. The order paramet®gsand R, are independent

of replica indices, equal t&k and R, respectively. Inserting therss order parameters
into (2.1), and taking the limit — 0, we can write thersBfree-energy functionafzss as

—Bfrse =1In2— 3[1 4 (m — Dq1](G1 — o) — 3[1 — g1+ m(q1 — 90)]do

1 R? 1 > -
—= —i-%/Dz |n/D21COSW’(VQ1—CIOZ1+\/%Z)

21— g1+ m(q1— qo)
mﬂ(qr%»)
1+81—-qu)

1In 1 1 ! In{1
+a[—2 A+pA—q0) — 5 ( +

_ B(1— 2R + qo) }
2(1+ B —q1) +mB(q1 — q0))

where [Dx = | - exp(—3x) is used and the change of variatje + R? = §o is
carried out. frsg is stationary at the saddle-point characterized by.sBorder parameters,
40, 41, 4o, 41, R and R.

(2.4)
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Then, the saddle-point equations are obtained from the stationary condition, written as
af (1 — g1+ m(g1 — qo))

T 1+ B—q1) + mBlgr — qo) (2.50)
o= [ oz (1O5icos Zeny em
n=fo! szlg:fcwoir:a s (2.50)

21— 2
Qo= 1+ ﬂ(o;-ﬂ_(j]-l) j};;(gj)— q0))? [1—-qg1+ ’:(611 — q0)]2 (2.5d)
61 = ap?(g1 — qo) o 250

[14+ 81 —gv][1+ B1—q1) +mB(g1— q0)]

whereZ = /g1 — qoz1 + \/%z is used. The allowed range of is 0 < m < 1 asn goes
to zero. It can be easily shown that after substituiing= 0 or m = 1, the free energy and
entropy reduce to thesresults, i.e.

Sfrea(m =0) = freg(m = 1) = frs (263)
Srsa(m = 0) = Sgsp(m = 1) = Sgs. (2.60)

Whenm = 0 (m = 1), the free energy and entropy do not dependyetig1), andqi (qo)
plays the role ofgrs. Since the free energy is convex with respectripthe 1RSB free
energy is always higher than tiws free energy for O< m < 1.

If an m state that has a fixed value mfis locally stable, it can be an appropriate solution
for the system. In the thermodynamic limit, however, the optimanwhich is relevant in
the thermodynamic limit is known to maximize the free energy [17]. In order to obtain the
1RSB solution with the maximal allowed free energy, we need to find the range thfat
gives the stable solution. Then the optimurss solution can be found for & m < 1. To
study the stability of therss solution, we will derive the stability condition of therss
solution in the next section.

3. Stability analysis of the one-stersBs solution

The stability of the solution can be examined by expanding the free-energy functional given
in (2.1) with respect to variation8r,,, SR,, §Qsp, SQU,) of R,, Ry, Qops Qap from the
values of the one-stesB solution. The fluctuation determining the stability of the solution

is assumed to come only frodQ,,, SQW [10]. Up to second order in these, the variation

of the free-energy functional is expressed as

82n13f = Z SQJ,O(SQJ,O - % Z Z f‘o’p,yBSQUp(S QyB - %Ol Z Z Fap,yé(S deszé
o.p o0 y.8 a.p y,8
(3.1)
where the detailed expressions s, 5, I',.,s are given in appendix A.

Following the formalisms of [17], the eigenvalues responsible for the stability of the
1RsBsaddle-point solution are associated with block fluctuatigrjgp 30, andzw 8Qap
where each ob and p belongs to a block of size:. For these eigenvalues, we have a
reduced stability matrix\/,

(XAO -1
= ] o2
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where Ao, Ag are also given in detail in appendix A. Two eigenvalues are found as
he = 3[(@Ao+ Ag) £ [(@Ao — Ag)® +4]77]. (3.3)

A_ is always negative, while the sign af. may change. Then, the stability condition is
given by

A=1—ahohAo>0. (3.9

The equality holds when, is equal to zero, giving the instability plane in theT—-mn

space. For give and T, the stability condition gives the allowed rangemof Hence we

can find an optimal solution which has lowest free energy and non-negative entropy as far
as satisfying the stability condition.

4. Results

We solve the self-consistent equations (2.5) numerically and plot the free energy and entropy
for several values o and temperatures in figures 3 and 4. The free energy is convex with
respect tan. The entropy is also convex, and positive for anyabove the zero entropy
line in thea—T plane. Below it the entropy is only positive foer; < m < my, vanishing
atm = mj, my. We also calculate\ given in (3.4) numerically, which is monotonically
decreasing withn and intersects the axis atm = m.. As a result, a stable solution should
be found form < m,.

In region A of figure 1 where thas zero entropy line is above thes AT line, we find
the 1RsB solution whose free energy is maximummt= mmax With m1 < mmax < mo.
Also we found thatnmna is smaller thanm, so that thelrRsB solution which is stationary
with respect to therse order parametei: satisfies the stability condition. As we approach
the zero entropy line by increasing the temperaturgax also increases and finally at the
zero entropy linemmax becomes one. Thus we conclude that there occurs a phase transition
from the RS to the 1RSB along theRs zero entropy line. Asnmax goes to oneg: — qo
remains non-zero, which indicates that the transition occurs discontinuously. In regions B
and C, thers AT line is above the zero entropy line. In this regiag, goes tog: as we

0.6575

0.6570

0.6565

0.6560

0.6555 |1 e

0.6550 L | : L
0 0.2 0.4 06 0.8 1

m

Figure 3. Free energy of therss solution as a function ofz at « = 4.0.
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Figure 4. Entropy of theirss solution as a function ok ato = 4.0
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Figure 5. Right-hand sideA of the stability condition in equation (3.4) as a functionmef

approach thers AT line, which signals the continuous phase transition fromrbé¢o the
1RSB phase along th&s AT line. The continuous transition line meets the discontinuous
transition line at a tricritical point,. = 0.79.

However, whenx is relatively large, quite a different behaviour occurs. We plot the
free energy, entropy and the stability eigenvaluefor « = 4.0 at several temperatures
in figures 3-5. In this regionumax is slightly larger tharnm, so that the stationaryrss
solution becomes unstable when the number of examples becomes large. We obtained the
RSB AT line satisfyingmmax = m. numerically, and showed it in figure 1. The line crosses
theRs AT line atag = 1.18. In the replica theory, it has been argued that the most relevant
1RSB solution among then states is the one satisfying the stationarity with respeeot.tdf
one wanted to find the stabkese solution which is also stationary with respect#g one
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Figure 6. Temperature dependence maf, m. andmy. The slope of the upper line is 1, and
that of the lower line is 2.

should go to the higher-stegse scheme in regions D and E. Nevertheless, we expect that
the high-sterse solution will not be very much different from thisrss solution we found
here, becausema is very close ton..

Figure 6 shows the temperature dependencaQfm, andm. asT approaches zero.
As far as shown by numerical calculations, thg andm, are linear withT while m; goes
as T?. mmax lies betweenn, andm,, so the entropy of the optimurrrss solution will
go to zero asl" approaches zerammay is exactly proportional td” in the Boolean case,
which is the case only nedf = 0 in the linear case. In the formey; is exactly equal to
unity, which is crucial in finding therss solution below thers zero entropy line. On the
other handg; goes to unity only ag” goes to zero in the latter. Numerical analysis on the
self-consistent equations obtained in section 2 becomes difficultihead.

We can derive the free-energy functional and the self-consistent equations at zero
temperature. We expect that — 1 andm — 0 asT — 0. We include this result
in appendix B. Again, thersB solution at7 = 0 can be obtained numerically. We do not
include detailed numerical results in this paper. It seems enough for our purpose in this
paper to note that the self-consistent equations depend ontySonThis agrees with the
numerical observation thait .y is proportional tol’ asT goes to zero.

5. Conclusion

We revisit a perceptron learning problem where there is weight mismatch between the
teacher and student networks. We study the property of the spin-glass phase wisghe
solution resulting from multi-degeneracy due to the weight mismatch. We derive the self-
consistent equations for thesssolution of block sizen from the saddle-point condition of

the free-energy functional. In order to examine the stability with respect to variation from
the saddle point, we find the stability condition from one of the eigenvalues of the stability
matrix associated with the variation of the free-energy functional. {Rs® solution exists

in the region where thes solution becomes unphysical, and we obtain tReB solution
numerically. ThelrsBsolution satisfying the stationarity with respect to tirssparameter
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m is stable only when the number of examples is small. Wiénless than, the transition
occurs discontinuously at the zero entropy line. Whenc o < «g, the transition from the
RS to the RSB solution occurs continuously along tRs AT line.

In summary, the one-stegsB solution can be adopted as a solution in the region where
thers solution becomes unphysical. When the number of examples becomes large, however,
the 1RsB solution also becomes unstable, implying that one should go to the highersstep
scheme for a more general solution.
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Appendix A

The stability analysis of thersB solution for a spin-glass problem wigh-spin interaction

is well established by Crisanti and Sommers [17]. Their analysis on possible eigenmodes
can be applied to our problem. We apply their formalism to our problem. We start with the
expression of,, ,s andT',, s in (3.1), given by

Topys = (RORPRYRS) — (RTRP)(XVR) (A.1)

Copys = (WOWPWY W8 — (WOWP) (WY WP) (A.2)

where

(_._fa_.»zfljdx;:,eo Dy(,_.)ea..,)eL</1:[dx"2:£”/DyeL)‘l (A.3)

Triwe (- W) exp[ Y, ReWIWO+ Y, 00, WO WO]

WO = - ~ A4
( > Trowey exp Y, ReWoWO+ 3 05, WoWO] (A4)
with
L= S et — g2+ Yit e — Ry + Rz(Zf">z SNl

2 o o 2 o 2 a,p " '
(A.5)

There are two sources in variatio@,, and Qap, two non-Gaussian averages owérand
We. This makes our analysis quite complicated, compared to the one in [17].

In order to calculate (A.1) and (A.2), we should count all the possible choicé® gf
andé Q,s. For example, (iXo, p) = (v, 8) ande,, = 1, (ii) one of (o, p) = one of (y, §),
€., = 1 ande, s = 0, etc. There are eleven such ways of pairingp) and (y, §), shown
in figure Al. Each circle indicates one ofm diagonal blocks, i.eA; represents the case
that (o, p) = (y, 8) and two replicasg and p, are in the same block, etd;, B;, and C;
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Figure Al. Eleven possible ways of pairing, p) and(y, §).

@@04

can be written in integral forms and expressed as functiong ,ofo, m, and 8, which do
not depend on particular replica indices. Arranging all the coefficients properly,

Z Fap,y55 QapSQyé = 2{(Al - AZ) - 2(Bl - B3) + (Cl - CZ)} Z Eo’p(a Qap)z

0,0,y,8 o,p

+4{(By — 2B, — B3+ 2Bs) — (C1— C; = 2C3+2Cy)} ) (e+8Q)]

op

+8(By — By — C3+ Cy) Z €5p8Q6p8Qoy

a,p,8
+4(B3— Bs— Co+ Ca)Tr8Q - €-5Q +4(Bs — Ca) ) _(5Q - 5Q)
o.p
+2(A2 — 2B3 + C2) Y _(8Q.,)°
o.p
+(C1 —3C; — 4C3+12C4 — 6Cs) ) €5p(€ - 8Q)o0 (€ - 8Q)

o.p

H(Co = 2+ Co) (Y e0rd00y)
0.0

+4(C3 - 3C4 + ZCS) Z EapEUV8QU;08Q}/5

o,py,8

F2AC— €)Y eopdQopd0ys +Cs(Y50s,)
a.p

0,0,y,8
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+4(Cs— Cs) Y (5Q + €+ 8Q)gp + 2(C2 — 2C4 + Cs) TH(e - 6Q)*.  (A6)

o.p

In this equation the bold italic letters stand for matrices. ReplacingialB;, and C; by
A;, B; andC; we can get a similar expression T Copy58Q0p8Qys.
The eigenmode responsible for the stability of the solution comes from block
fluctuations [17]. Then the contributiafg to I',, ;5 in equation (A.6) from this eigenmode
is given by

Ao= (A —2B3+ C3) +2m(B3z — B4 — Cy + Cy) + mZ(Cg —2C4+ Cs). (A?)
After some manipulation, we have

/32

A, —2B3+Cr= —— A.8a

IR 4 pA— gl (A8
—B%(q1 — q0)

B3 — B4+ Cq4—Co = A.8b

ST T T 4 BA— gL + AL — q0) + mB(q1 — qo)] (A-80)
B*(q1 — 90)?

Co—2C4+ Cs = . A.8C
2= 204t O = [ B P+ B a0+ mBlar — o2 (489
So Ay is simplified as

’32
Ao = . A.9
°T L+ B —qn) +mBar — qo)]? (A-9)

The corresponding contributiofg to ﬁ,p,ys can also be found in a similar way,

Ao = (A2 —2B3+ C2) + 2m(B3 — By — Ca+ Cy4) + m*(Ca — 2C4 + Cs) . (A.10)

The coefficients are given by

A, =1 (A.11a)
. [ Dzy cosi' Z tanif Z

Bs= | D A.11b
3 ¢ J Dzycosi' Z ( )
. J Dzy cosh' Z tanhZ 2

B,= | D A.llc
‘ / ¢ ( J Dzicosi' Z ( )
. [ Dzj cost' Z tant? 7\

C,=| D A.11d
2 / Z( [ Dzicosi' Z ( )
. Dz, cosi' Ztant Z / [ Dz; cosH! Z tanhz\?

o= [D:d Pa (f “ ) (A.11¢)

[ Dzycost' Z J Dzycosh' Z

R J Dzy cosH' Z tanhZ 4

Cs= | D A.11f
> / < ( [ Dzicosit' Z ( )

where Z = /41— goz1 + +/doz is used. Finally, we get the stability condition in
equation (3.4) from a reduced matrx given in terms ofAq and Ao, shown in (3.2).



1408 K Park et al
Appendix B

We checked our results also at the zero-temperature limit. In this limit, we can rewrite the
free energy takingg — oo with 8(1 — ¢g1) andmp kept constant:

F= 1 L1 ( + mpxo)d +1 R? +a 2—2R — xg
X x X mpxog)X —
Pl ! 00 S i+ mBxo | 21+ x1 +mBxo
o 1+ x;
—-——/d e 17 n A In B.1
o e a2 ©1)
where
AL = —mBzi+/ X150 Dz :te("ﬂnx/xlxo D
214/ Xo— mﬂf —21 «’?o—mﬂ\/;l
and order parameters are redefined as
x1=p1—q1) (B.2a)
X0 = 1—q0 (BZb)
%1 =m*B%(G1 — go) (B.2c)
fo=m*$%o. (B.2d)
The saddle-point equations are
1,4 A
X1 = Fe%(mﬂ)zfl dzy exp[_é(xl + xO)ZJZ.] (BBa)
b4 2 Ay
don 1,2 (A_)2
xXo=1— PRESSHY [ B.3b
o=1-Vi [ et (L (B.30)
_ a(x1+mpxo) (B.3)
14 x1+ mBxo '
A axg
_ B.3d
T A x) A+ x1+ mPxo) (B-3d)
. a(e+2—2R — xg)
_ B.3e
0= A4 xq + mPog)? (B39
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