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Abstract. We investigate the properties of the one-step replica-symmetry-breaking (1RSB)
solution for a perceptron learning from examples with weight mismatch where the entropy zero
line crosses the Almeida–Thouless (AT) line of theRS solution. For a small number of examples
we find the optimal1RSB solution which has the maximum free energy, non-negative entropy
and satisfies the stability condition, theAT criterion for the1RSB solution. The transition fromRS

to 1RSB is continuous or discontinuous depending on whether theRS AT line is above or below
the zero entropy line. However, for a relatively large number of examples, the1RSB solution
which maximizes the free energy becomes unstable, and should be replaced by higher-stepRSB

solutions. We also obtain theAT line for the1RSB solution.

1. Introduction

Feedforward layered networks, so-called perceptrons, are considered as having an
appropriate neural architecture where various learning mechanisms can be studied [1–4].
Gardner [5] showed that a statistical–mechanical approach can be useful for studying the
properties of feedforward networks, whence there have been many valuable results in studies
of storage capacity [5–7] and learning [8–10]. Most of the studies have been done for a
single-layer perceptron, the simplest feedforward network. Recently, some progress in
studies on a double-layer perceptron, the committee machine, has been reported [11–14].
Further studies on a more realistic network, with more than two layers or multiple outputs,
are in progress [15].

In this paper, we revisit the problem of learning in a single-layer perceptron, where there
was an unresolved question about the nature of the low-temperature solution. The network
is composed ofN input nodes,N synapses with weightsWi (i = 1, . . . , N), and a single
output node. A teacher network providesP sets of examples in the form of input–output
pairs,(Sl , σ0(S

l)), with l = 1, . . . , P . Input variablesSl
i , interpreted as a problem (pattern),

are ith components of vectorsSl . The resultant outputσ l
0, as the answer (pattern code), is

generated via synaptic weights and the transfer functiong0 asσ l
0 = g0(N

−1/2Sl · W 0). A
student network with a given transfer functiong is trained by tuning the synaptic weights
to minimize the error of the trial answerσ l = g(N−1/2Sl · W ) from the correct one given
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by the teacher network. The error functionE is defined as

E
(
W ; {Sl}) =

P∑
l=1

ε(W ; Sl)

=
P∑

l=1

1
2

[
g (N−1/2Sl · W ) − g0 (N−1/2Sl · W 0)

]2
. (1.1)

The numberP of examples is known to scale asαN so as to reach a learning stage.
Regarding the error function in equation (1.1) as the Hamiltonian of a thermodynamic
system, this learning problem becomes a statistical mechanics problem of a disordered
system.

When the architectures of the teacher and the student network are different from each
other, the student network might not reproduce the target output of the teacher network
exactly. Among these unrealizable cases, the case of weight mismatch is interesting, where
the student network has discrete weights,Wi = ±1, while the teacher has continuous ones.
Output made by the student cannot be correct, instead there are many optimal answers
with the same level of error, which correspond to many degenerate ground states in the
sense of statistical mechanics. In fact, Seunget al found that a spin-glass phase exists
in a low-temperature region. As an approximate estimate for the phase boundary of the
spin-glass phase, they suggested the line of zero entropy below which the replica-symmetric
(RS) solution has a negative entropy [9]. Particularly when the transfer function is Boolean,
they found that the one-step replica-symmetry-breaking (1RSB) solution can be found very
easily and proposed it as an exact solution below the zero entropy line as in the study
of storage capacity [7]. Later, Kwonet al obtained an instability line corresponding to
the Almeida–Thouless (AT) line of the RS solution and proposed it as the exact phase
boundary of the spin-glass phase. They found theAT line when the transfer function is
linear in figure 1 of [10], showing that there is a crossing between theAT line and the
zero entropy line. We reproduce this in figure 1. We also find theAT line when the
transfer function is Boolean in figure 2, which shows theAT line lies below the zero

Figure 1. Zero entropy line and theAT line of the RS and 1RSB solution for the linear transfer
function.
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entropy line for all regions. It means that a discontinuous transition should occur from
the RS solution across the zero entropy line, confirming the earlier proposition by Seunget
al.

Figure 2. Zero entropy line and theAT line of theRS solution for the Boolean transfer function.
The AT line drops to theT = 0 axis atα = 2.47.

The case of the linear transfer function, however, left a problem unresolved. As seen in
figure 1, theAT line is below the zero entropy line for small numbers of examples, so should
not be regarded as the phase boundary. Note that one of the eigenvalues, determining the
curvature of the free energy, vanishes at theAT line, signalling a continuous phase transition.
In the region where theAT line is below the zero entropy line, there might be a first-
order phase transition above theAT line. The first-order phase transition is determined by
comparing theRS solution, correct at high temperatures, with the low-temperature solution
having a certain broken replica symmetry. We consider the1RSB solution as a candidate,
at least as a more physical one than theRS one. In section 2, we derive the self-consistent
equations for the1RSB solution which by no means show a simple form in contrast to
the case of the Boolean transfer function. In section 3, we derive the stability condition
for the 1RSB solution in order to check whether it may be stable at low temperature. In
section 4, we present our results which show quite complicated behaviour, not observed
in the case of the Boolean transfer function. We find that there exist1RSB solutions at a
low temperature with non-negative entropy. Via the stability analysis of the1RSB solution
we find, however, the1RSB solution which satisfies the stationarity with respect to theRSB

parameterm in the Parisi replica-symmetry-breaking scheme [16] becomes unstable for a
relatively large number of examples. We obtain the stability line for the1RSB solution
and show how transitions from theRS to the 1RSB solution occur either discontinuously or
continuously inq1 − q0, according to the number of examples. We summarize our study in
section 5.



1400 K Park et al

2. One-stepRSB solution

The free-energy functionalf per neuron was found using the replica trick and the saddle-
point method in the limit of large numberN of input nodes, expressed as

nβf [Rσ , R̂σ , Qσρ, Q̂σρ ]

=
∑

σ

R̂σRσ +
∑
σ<ρ

Q̂σρQσρ −ln Tr{Wσ } exp

[∑
σ

R̂σWσW 0+
∑
σ<ρ

Q̂σρW
σW 0

]

−α ln
∫ ∏

σ

dxσ dx̂σ

2π

∫
dy dŷ

2π
exp

[
− 1

2β
∑

σ

(g(xσ ) − g0(y))
2

+
∑

σ

ix̂σ xσ − iŷy +
∑
σ<ρ

Qσρx̂
σ x̂ρ − 1

2

∑
σ

x̂2
σ − ŷ

∑
σ

Rσ x̂σ − 1
2 ŷ2

]
. (2.1)

Here, σ and ρ are replica indices andn is the number of replicas. Then → 0 limit is
taken afterwards. The weightW 0 of the teacher network is quenched, having a Gaussian
distribution with a variance of unity. The weightsWσ of the replicated student networks
are either+1 or −1. We restrict ourselves to the case of unrealizable learning solely due to
weight mismatch. So,g(x) = g0(x) = x. The free-energy functional is made stationary by
the saddle-point solution given by the order parameters,Qσρ andRσ , and their conjugate
parameters,Q̂σρ and R̂σ .

Now we assume the saddle-point solution has one-step replica-symmetry breaking.
Following the Parisi replica-symmetry-breaking scheme [16], we divide(n × n) matrices,
Qσρ andQ̂σρ , into (n/m)2 blocks of sizem. Then, the order parameterQσρ can be written
as

Qσρ = (1 − q1)δσρ + (q1 − q0)εσρ + q0 (2.2)

whereδσρ is the Kronecker delta function and the matrixεσρ is defined as

εσρ =
{

1 if σ andρ are in a diagonal block

0 otherwise .
(2.3)

Q̂σρ can be written in a similar way. The order parametersRσ and R̂σ are independent
of replica indices, equal toR and R̂, respectively. Inserting the1RSB order parameters
into (2.1), and taking the limitn → 0, we can write the1RSB free-energy functionalfRSB as

−βfRSB = ln 2 − 1
2[1 + (m − 1)q1](q̂1 − q̂0) − 1

2[1 − q1 + m(q1 − q0)]q̂0

−1

2

R2

1 − q1 + m(q1 − q0)
+ 1

m

∫
Dz ln

∫
Dz1 coshm(

√
q̂1 − q̂0z1 +

√
q̂0z)

+α

[
−1

2
ln (1 + β(1 − q1)) − 1

2m
ln

(
1 + mβ(q1 − q0)

1 + β(1 − q1)

)
− β(1 − 2R + q0)

2(1 + β(1 − q1) + mβ(q1 − q0))

]
(2.4)

where
∫

Dx = ∫
dx√
2π

exp
(− 1

2x2
)

is used and the change of variableq̂0 + R̂2 → q̂0 is
carried out.fRSB is stationary at the saddle-point characterized by the1RSBorder parameters,
q0, q1, q̂0, q̂1, R and R̂.
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Then, the saddle-point equations are obtained from the stationary condition, written as

R = αβ (1 − q1 + m(q1 − q0))

1 + β(1 − q1) + mβ(q1 − q0)
(2.5a)

q0 =
∫

Dz

(∫
Dz1 coshm Z tanhZ∫

Dz1 coshm Z

)2

(2.5b)

q1 =
∫

Dz

∫
Dz1 coshm Z tanh2 Z∫

Dz1 coshm Z
(2.5c)

q̂0 = αβ2(1 − 2R + q0)

[1 + β(1 − q1) + mβ(q1 − q0)]2
+ R2

[1 − q1 + m(q1 − q0)]2
(2.5d)

q̂1 = αβ2(q1 − q0)[
1 + β(1 − q1)

] [
1 + β(1 − q1) + mβ(q1 − q0)

] + q̂0 (2.5e)

whereZ =
√

q̂1 − q̂0z1 +
√

q̂0z is used. The allowed range ofm is 0 6 m 6 1 asn goes
to zero. It can be easily shown that after substitutingm = 0 or m = 1, the free energy and
entropy reduce to theRS results, i.e.

fRSB(m = 0) = fRSB(m = 1) = fRS (2.6a)

SRSB(m = 0) = SRSB(m = 1) = SRS . (2.6b)

Whenm = 0 (m = 1), the free energy and entropy do not depend onq0 (q1), andq1 (q0)

plays the role ofqRS. Since the free energy is convex with respect tom, the 1RSB free
energy is always higher than theRS free energy for 0< m < 1.

If an m state that has a fixed value ofm is locally stable, it can be an appropriate solution
for the system. In the thermodynamic limit, however, the optimumm which is relevant in
the thermodynamic limit is known to maximize the free energy [17]. In order to obtain the
1RSB solution with the maximal allowed free energy, we need to find the range ofm that
gives the stable solution. Then the optimum1RSB solution can be found for 0< m < 1. To
study the stability of the1RSB solution, we will derive the stability condition of the1RSB

solution in the next section.

3. Stability analysis of the one-stepRSB solution

The stability of the solution can be examined by expanding the free-energy functional given
in (2.1) with respect to variationsδRσ , δR̂σ , δQσρ, δQ̂σρ of Rσ , R̂σ , Qσρ, Q̂σρ from the
values of the one-stepRSB solution. The fluctuation determining the stability of the solution
is assumed to come only fromδQσρ, δQ̂σρ [10]. Up to second order in these, the variation
of the free-energy functional is expressed as

δ2nβf =
∑
σ,ρ

δQσρδQ̂σρ − 1
2

∑
σ,ρ

∑
γ,δ

0̂σρ,γ δδQ̂σρδQ̂γ δ − 1
2α

∑
σ,ρ

∑
γ,δ

0σρ,γ δδQσρδQγδ

(3.1)

where the detailed expressions for0̂σρ,γ δ, 0σρ,γ δ are given in appendix A.
Following the formalisms of [17], the eigenvalues responsible for the stability of the

1RSBsaddle-point solution are associated with block fluctuations,
∑

σ,ρ δQσρ and
∑

σ,ρ δQ̂σρ

where each ofσ and ρ belongs to a block of sizem. For these eigenvalues, we have a
reduced stability matrixM,

M =
[

α30 −1
−1 3̂0

]
(3.2)
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where30, 3̂0 are also given in detail in appendix A. Two eigenvalues are found as

λ± = 1
2[(α30 + 3̂0) ± [(α30 − 3̂0)

2 + 4]1/2] . (3.3)

λ− is always negative, while the sign ofλ+ may change. Then, the stability condition is
given by

3 = 1 − α303̂0 > 0 . (3.4)

The equality holds whenλ+ is equal to zero, giving the instability plane in theα–T –m

space. For givenα andT , the stability condition gives the allowed range ofm. Hence we
can find an optimal solution which has lowest free energy and non-negative entropy as far
as satisfying the stability condition.

4. Results

We solve the self-consistent equations (2.5) numerically and plot the free energy and entropy
for several values ofα and temperatures in figures 3 and 4. The free energy is convex with
respect tom. The entropy is also convex, and positive for anym above the zero entropy
line in theα–T plane. Below it the entropy is only positive form1 < m < m2, vanishing
at m = m1, m2. We also calculate3 given in (3.4) numerically, which is monotonically
decreasing withm and intersects them axis atm = mc. As a result, a stable solution should
be found form 6 mc.

In region A of figure 1 where theRS zero entropy line is above theRS AT line, we find
the 1RSB solution whose free energy is maximum atm = mmax with m1 < mmax < m2.
Also we found thatmmax is smaller thanmc so that the1RSB solution which is stationary
with respect to theRSB order parameterm satisfies the stability condition. As we approach
the zero entropy line by increasing the temperature,mmax also increases and finally at the
zero entropy line,mmax becomes one. Thus we conclude that there occurs a phase transition
from the RS to the 1RSB along theRS zero entropy line. Asmmax goes to one,q1 − q0

remains non-zero, which indicates that the transition occurs discontinuously. In regions B
and C, theRS AT line is above the zero entropy line. In this region,q0 goes toq1 as we

Figure 3. Free energy of the1RSB solution as a function ofm at α = 4.0.
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Figure 4. Entropy of the1RSB solution as a function ofm at α = 4.0.

Figure 5. Right-hand side3 of the stability condition in equation (3.4) as a function ofm.

approach theRS AT line, which signals the continuous phase transition from theRS to the
1RSB phase along theRS AT line. The continuous transition line meets the discontinuous
transition line at a tricritical pointαc = 0.79.

However, whenα is relatively large, quite a different behaviour occurs. We plot the
free energy, entropy and the stability eigenvalue3 for α = 4.0 at several temperatures
in figures 3–5. In this region,mmax is slightly larger thanmc so that the stationary1RSB

solution becomes unstable when the number of examples becomes large. We obtained the
RSB AT line satisfyingmmax = mc numerically, and showed it in figure 1. The line crosses
the RS AT line at α0 = 1.18. In the replica theory, it has been argued that the most relevant
1RSB solution among them states is the one satisfying the stationarity with respect tom. If
one wanted to find the stableRSB solution which is also stationary with respect tom, one



1404 K Park et al

Figure 6. Temperature dependence ofm1, mc and m2. The slope of the upper line is 1, and
that of the lower line is 2.

should go to the higher-stepRSB scheme in regions D and E. Nevertheless, we expect that
the high-stepRSB solution will not be very much different from the1RSB solution we found
here, becausemmax is very close tomc.

Figure 6 shows the temperature dependence ofm1, m2 andmc as T approaches zero.
As far as shown by numerical calculations, themc andm2 are linear withT while m1 goes
as T 2. mmax lies betweenm1 and m2, so the entropy of the optimum1RSB solution will
go to zero asT approaches zero.mmax is exactly proportional toT in the Boolean case,
which is the case only nearT = 0 in the linear case. In the former,q1 is exactly equal to
unity, which is crucial in finding theRSB solution below theRS zero entropy line. On the
other hand,q1 goes to unity only asT goes to zero in the latter. Numerical analysis on the
self-consistent equations obtained in section 2 becomes difficult nearT = 0.

We can derive the free-energy functional and the self-consistent equations at zero
temperature. We expect thatq1 → 1 and m → 0 as T → 0. We include this result
in appendix B. Again, the1RSB solution atT = 0 can be obtained numerically. We do not
include detailed numerical results in this paper. It seems enough for our purpose in this
paper to note that the self-consistent equations depend only onmβ. This agrees with the
numerical observation thatmmax is proportional toT asT goes to zero.

5. Conclusion

We revisit a perceptron learning problem where there is weight mismatch between the
teacher and student networks. We study the property of the spin-glass phase with the1RSB

solution resulting from multi-degeneracy due to the weight mismatch. We derive the self-
consistent equations for the1RSBsolution of block sizem from the saddle-point condition of
the free-energy functional. In order to examine the stability with respect to variation from
the saddle point, we find the stability condition from one of the eigenvalues of the stability
matrix associated with the variation of the free-energy functional. The1RSB solution exists
in the region where theRS solution becomes unphysical, and we obtain the1RSB solution
numerically. The1RSBsolution satisfying the stationarity with respect to the1RSBparameter
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m is stable only when the number of examples is small. Whenα is less thanαc the transition
occurs discontinuously at the zero entropy line. Whenαc < α < α0, the transition from the
RS to theRSB solution occurs continuously along theRS AT line.

In summary, the one-stepRSB solution can be adopted as a solution in the region where
theRSsolution becomes unphysical. When the number of examples becomes large, however,
the 1RSBsolution also becomes unstable, implying that one should go to the higher stepRSB

scheme for a more general solution.
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Appendix A

The stability analysis of the1RSB solution for a spin-glass problem withp-spin interaction
is well established by Crisanti and Sommers [17]. Their analysis on possible eigenmodes
can be applied to our problem. We apply their formalism to our problem. We start with the
expression of0σρ,γ δ and 0̂σρ,γ δ in (3.1), given by

0σρ,γ δ = 〈x̂σ x̂ρ x̂γ x̂δ〉 − 〈x̂σ x̂ρ〉〈x̂γ x̂δ〉 (A.1)

0̂σρ,γ δ = 〈WσWρWγ Wδ〉 − 〈WσWρ〉〈Wγ Wδ〉 (A.2)

where

〈· · · x̂σ · · ·〉 =
∫ ∏

σ

dxσ dx̂σ

2π

∫
Dy(· · · x̂σ · · ·)eL

( ∫ ∏
σ

dxσ dx̂σ

2π

∫
Dy eL

)−1

(A.3)

〈· · ·Wσ · · ·〉 = Tr{Wσ }(· · ·Wσ · · ·) exp
[∑

σ R̂σWσW 0 + ∑
σ<ρ Q̂σρW

σW 0
]

Tr{Wσ } exp
[∑

σ R̂σWσW 0 + ∑
σ<ρ Q̂σρWσW 0

] (A.4)

with

L = −β

2

∑
σ

{g(xσ ) − g(y)}2 +
∑

σ

ix̂σ (xσ − Ry) + R2

2

( ∑
σ

x̂σ

)2

− 1

2

∑
σ,ρ

Qσρx̂
σ x̂ρ .

(A.5)

There are two sources in variation,Qσρ andQ̂σρ , two non-Gaussian averages overxσ and
Wσ . This makes our analysis quite complicated, compared to the one in [17].

In order to calculate (A.1) and (A.2), we should count all the possible choices ofδQσρ

andδQγδ. For example, (i)(σ, ρ) = (γ, δ) andεσρ = 1, (ii) one of (σ, ρ) = one of(γ, δ),
εσρ = 1 andεγ δ = 0, etc. There are eleven such ways of pairing(σ, ρ) and (γ, δ), shown
in figure A1. Each circle indicates one ofn/m diagonal blocks, i.e.A1 represents the case
that (σ, ρ) = (γ, δ) and two replicas,σ andρ, are in the same block, etc.Ai , Bi , andCi
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Figure A1. Eleven possible ways of pairing(σ, ρ) and(γ, δ).

can be written in integral forms and expressed as functions ofq1, q0, m, andβ, which do
not depend on particular replica indices. Arranging all the coefficients properly,

∑
σ,ρ,γ,δ

0σρ,γ δδQσρδQγδ = 2{(A1 − A2) − 2(B1 − B3) + (C1 − C2)}
∑
σ,ρ

εσρ(δQσρ)
2

+4{(B1 − 2B2 − B3 + 2B4) − (C1 − C2 − 2C3 + 2C4)}
∑

σ

(ε · δQ)2
σρ

+8(B2 − B4 − C3 + C4)
∑
σ,ρ,δ

εσρδQσρδQσγ

+4(B3 − B4 − C2 + C4) Tr δQ · ε · δQ + 4(B4 − C4)
∑
σ,ρ

(δQ · δQ)σρ

+2(A2 − 2B3 + C2)
∑
σ,ρ

(δQσρ)
2

+(C1 − 3C2 − 4C3 + 12C4 − 6C5)
∑
σ,ρ

εσρ(ε · δQ)σσ (ε · δQ)ρρ

+(C2 − 2C4 + C5)
(∑

σ,ρ

εσρδQσρ

)2

+4(C3 − 3C4 + 2C5)
∑

σ,ρ γ,δ

εσρεσγ δQσρδQγδ

+2(C4 − C5)
∑

σ,ρ,γ,δ

εσρδQσρδQγδ + C5

(∑
σ,ρ

δQσρ

)2
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+4(C4 − C5)
∑
σ,ρ

(δQ · ε · δQ)σρ + 2(C2 − 2C4 + C5) Tr(ε · δQ)2 . (A.6)

In this equation the bold italic letters stand for matrices. Replacing allAi, Bi , andCi by
Âi, B̂i and Ĉi we can get a similar expression for

∑
σ,ρ,γ,δ 0̂σρ,γ δδQ̂σρδQ̂γ δ.

The eigenmode responsible for the stability of the solution comes from block
fluctuations [17]. Then the contribution30 to 0σρ,γ δ in equation (A.6) from this eigenmode
is given by

30 = (A2 − 2B3 + C2) + 2m(B3 − B4 − C2 + C4) + m2(C2 − 2C4 + C5) . (A.7)

After some manipulation, we have

A2 − 2B3 + C2 = β2

[1 + β(1 − q1)]2
(A.8a)

B3 − B4 + C4 − C2 = −β3(q1 − q0)

[1 + β(1 − q1)]2[1 + β(1 − q1) + mβ(q1 − q0)]
(A.8b)

C2 − 2C4 + C5 = β4(q1 − q0)
2

[1 + β(1 − q1)]2[1 + β(1 − q1) + mβ(q1 − q0)]2
. (A.8c)

So 30 is simplified as

30 = β2

[1 + β(1 − q1) + mβ(q1 − q0)]2
. (A.9)

The corresponding contribution̂30 to 0̂σρ,γ δ can also be found in a similar way,

3̂0 = (Â2 − 2B̂3 + Ĉ2) + 2m(B̂3 − B̂4 − Ĉ2 + Ĉ4) + m2(Ĉ2 − 2Ĉ4 + Ĉ5) . (A.10)

The coefficients are given by

Â2 = 1 (A.11a)

B̂3 =
∫

Dz

∫
Dz1 coshm Z tanh2 Z∫

Dz1 coshm Z
(A.11b)

B̂4 =
∫

Dz

(∫
Dz1 coshm Z tanhZ∫

Dz1 coshm Z

)2

(A.11c)

Ĉ2 =
∫

Dz

(∫
Dz1 coshm Z tanh2 Z∫

Dz1 coshm Z

)2

(A.11d)

Ĉ4 =
∫

Dz

∫
Dz1 coshm Z tanh2 Z∫

Dz1 coshm Z

(∫
Dz1 coshm Z tanhZ∫

Dz1 coshm Z

)2

(A.11e)

Ĉ5 =
∫

Dz

(∫
Dz1 coshm Z tanhZ∫

Dz1 coshm Z

)4

(A.11f)

where Z =
√

q̂1 − q̂0z1 +
√

q̂0z is used. Finally, we get the stability condition in
equation (3.4) from a reduced matrixM given in terms of30 and3̂0, shown in (3.2).
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Appendix B

We checked our results also at the zero-temperature limit. In this limit, we can rewrite the
free energy takingβ → ∞ with β(1 − q1) andmβ kept constant:

f = 1

2
x1x̂1 + 1

2
(x1 + mβx0)x̂0 + 1

2

R2

x1 + mβx0
+ α

2

2 − 2R − x0

1 + x1 + mβx0

− 1

mβ

∫
dz1

√
x̂1

2π
e− 1

2 x̂1z
2
1 ln A+ − α

2mβ
ln

{
1 + x1

1 + x1 + mβx0

}
(B.1)

where

A± ≡ e−mβz1

√
x̂1x̂0

∫ ∞

z1

√
x̂0−mβ

√
x̂1

Dz ± emβz1

√
x̂1x̂0

∫ ∞

−z1

√
x̂0−mβ

√
x̂1

Dz

and order parameters are redefined as

x1 ≡ β(1 − q1) (B.2a)

x0 ≡ 1 − q0 (B.2b)

x̂1 ≡ m4β2(q̂1 − q̂0) (B.2c)

x̂0 ≡ m4β2q̂0 . (B.2d)

The saddle-point equations are

x1 =
√

2

π
e− 1

2 (mβ)2x̂1

∫
dz1√
2π

exp
[− 1

2(x̂1 + x̂0)z
2
1

]
A+

(B.3a)

x0 = 1 −
√

x̂1

∫
dz1√
2π

e− 1
2 x̂1z

2
1

(
A−
A+

)2

(B.3b)

R = α(x1 + mβx0)

1 + x1 + mβx0
(B.3c)

x̂1 = αx0

(1 + x1)(1 + x1 + mβx0)
(B.3d)

x̂0 = α(α + 2 − 2R − x0)

(1 + x1 + mβx0)2
. (B.3e)
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